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Abstract. We have studied the triangular lattice gas model subject to nearest-neighbour
repulsive interactions in the mean-field approach, leading to a clear understanding of the order–
disorder transition and its effect on the intercalation process in transitional compounds such
as LixTiS2. The triangular lattice division into three sublattices enables us to emphasize the
appearance and the growth of the ordered phase. The computation of the incremental capacity
defined as the response function of the TiS2 cell to the Li+ intercalation allows us to obtain
information about the global behaviour of the system with regard to the intercalation process.

1. Introduction

The two-dimensional lattice gas model with nearest-neighbour repulsive interactions is of
great interest since it provides a reasonable model for studying the transport properties
of superionic conductors [1], intercalation processes in rigid host structures [2] or surface
diffusion with the formation of ordered states [3].

Lithium intercalation batteries based on layered materials such as the transition-metal
dichalcogenides seem capable of providing an efficient new method of electrical energy
storage [4–6]. Thompson [7] has recently proposed that anomalies in the voltage-discharge
curve of a system such as LixTiS2 result from the ordering of the two-dimensional lattice gas
of Li+ ions due to the long-range Coulomb repulsion. In particular, he claims that peaks
in the negative inverse slope−1x/1V of the voltage versus composition curve appear
at compositions for which there exist ordered arrangements of Li+ ions. Thompson [7]
obtained this result by adopting the electrochemical technique which involves applying a
series of constant potential steps to an electrochemical cell. At each potential step the cell
is permitted to attain quasi-open-circuit conditions by letting the current decay to a small
but finite value. When small voltage steps are applied, the voltage-charge relation is highly
precise and accurate in relation to the thermodynamic properties of the cell. Application
to the LixTiS2 couple show that the accumulated charge on each voltage step resembles an
electrochemical potential spectrogram that provides evidence for the structural ordering of
lithium in Li xTiS2.

The data are collected in a derivative format that produces peaks in ‘intensity’
(incremental capacity) at the phase transition in cell components and when two-phase
products are formed. The incremental capacity is then a response function to the
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electrochemical cell analogous to the isothermal compressibility where the pressure is
replaced by the cell potential at open circuit and the volume is substituted by the charge.

Therefore, this paper is specifically concerned with a general mean-field approach of
the triangular lattice gas model for the problem of ordering of Li+ ions in the system
Li xTiS2. This problem was studied by Berlinskyet al [2], through a renormalization group
calculation. These systems favour the appearance of the order–disorder transition [8, 9] in
which the lattice symmetry is broken. The order discriminates different sublattices which
can be referred to by an index; for instance, in the case of the triangular lattice withz = 6
nearest neighbours the order discriminates three sublattices denoted A, B and C. In this
paper we are concerned with the overall variation on the order parameter (regarded as the
difference between the occupations of the three sublattices) with the average concentration
p̄, and the variation in the incremental capacity dp̄/dµ which characterizes the response to
the intercalation process.

2. Lattice gas model

The hopping approach to the many-particle problems is based on the lattice gas model in
which each possible configuration is specified by a set of occupation numbers referring to
the different lattice sites available for the mobile particles:

{n} = {n1, n2, . . . , nN }.
The total Hamiltonian for the static properties of the system is written in terms of these
occupation numbers as

H = − 1
2

∑
ij

εij ninj − µ
∑
i

ni (1)

whereεij denotes the pair interaction energy and is taken to be negative to represent repulsive
interactions [10],µ is the chemical potential determining the average occupation number
[11] andni represents the state of theith site;ni is equal to unity if the sitei is occupied
and is equal to zero if it is empty.

If P {n}, t) denotes the probability of finding a given configuration{n} at time t , the
dynamics of the system are governed by the master equation [12, 13]

∂P ({n}, t)
∂t

=
∑
{n′}

ω({n′}, {n})P ({n′}, t)− ω({n}, {n′})P ({n}, t). (2)

The change from one configuration{n} to another{n′} occurs through the change
in the occupation number is two nearest-neighbour sites. The rate of the configurations
exchange is expressed by the transition frequencyω({n}, {n′}) which encloses all the
physical information of the considered system. Generally, the transition frequency is
supposed to satisfy the detailed balance condition

ω({n}, {n′})Peq({n}) = ω({n′}, {n})Peq({n′}). (3)

We should note that different choices of the transition frequency compatible with the
detailed balance condition are possible [14]. In our case, we limit the jumps of the mobile
particles to between nearest-neighbour sites only. This is represented by the product of the
first two Krönecker symbols in the transition frequency given by equation (4). The vectors
k andk + a stand for the position of the neighbouring sites.

Exclusion of the hard core ensures that the jump of the particles is possible only if the
arrival site is empty. This is taken into account by the factornk(1− nk+a).
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A third Krönecker symbol is added to ensure that the two considered configurations are
distinguished by the jump of one and only one particle. Hence, all the occupations other
than those referring to the permutation of the neighbouring sites state are conserved.

As the transition frequency contains physical information on the system, it must take
into account the particle interactions. We include a transition weightω({n},k,a) that
measures the energy variation caused by the jump of the mobile particles. Furthermore,
only nearest-neighbour interactions are considered and are reduced to a site-independent
parameterε. Regarding these conditions, the transition frequency is written as [15]

ω({n}, {n′}) =
∑
k,a

ω({n},k,a)nk(l − nk+a)δn
′
k+a
nk δ

n′k
nk+aδ

k,a
{n},{n′} (4)

wherea is the jump vector andk determines the site position.
The evolution is supposed to be a succession of independent jumps and the saddle-point

energy is assumed to be insensitive to the environment (the barrier only depends on the
depth of the initial site). Then, we assume that the diffusion mechanism is an actived
process and the transition weight can be written as

ω({n},k,a) = ω0 exp

(
γ
∑
i

ui 6=a

nk+ui

)
(5)

whereγ = −ε/kBT is the reduced energy,kB is the Boltzmann constant,ω0 is the Arrhenius
factor andui is the vector associated with the initial and the nearest neighbour sites.

Equation (5) can also be written as

ω({n},k,a) = ω0

∏
i

ωr(nk+ui ) (6)

where

ωr(nk+ui ) = exp(γ nk+ui ). (6′)

3. Mean-field approximation

Following the classical phenomenological Cahn–Hilliard [16] approach [17], we can
consider averages of the transition weight leading to the thermodynamic analysis [15]. This
consideration has the advantage of allowing rigorous and interesting exact mathematical
solutions even though it cannot describe properly the physical reality. In fact, the property
of symmetry is lost and there is an ambiguity in defining the chemical potential correctly. In
this paper, averages are taking in the exponential in order to lead to the usual thermodynamic
equilibrium.

The jump probability is then written as

〈ωr(nk+ui )〉 = ω0

∏
i

ωr(p(k + ui )) = ω0

∏
i

exp(γp(k + ui )) (7)

wherep(k + ui ) is the probability of finding a particle in the sitek + ui .
Calculation of the time evolution of the concentration is made in the limit of the mean-

field approach which states that the probabilityP({n}, t) can be factorized as

P({n}, t) =
∏
k

p(nk, t) =
∏
k

p(k, t). (8)

The time evolution of the average concentrationp(k) is given by the following equation:

∂p(k)

∂t
= −

∑
a

〈Jk,k+a({n})〉 (9)
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where

p(k) = 〈nk〉 =
∑
{n}
nkP({n}, t)

and where the density of the current flux is written as

〈Jk,k+a({n})〉 = ω(k,a)p(k)(1− p(k + a))− ω(k + a,−a)p(k + a)(1− p(k)). (10)

4. Lattice division: introduction of the order parameter

The triangular lattice is divided into three interpenetrating sublattices A, B and C, such
that any site in one of them, say A, has three nearest neighbours in each of the other two
sublattices, B and C (figure 1). This representation can be justified by the work of Kaburagi
and Kanamori [18, 19]. The evaluation of the order in the system is then possible through
the introduction of three order parametersηαλ which represent the difference between the
occupations of the three sublattices and are defined as follows:

ηαλ = |pα − pλ|
with α, λ = A, B or C andλ 6= α.

Figure 1. Representation of the triangular lattice with its three interpenetrating sublattices A, B
and C, so that any site in one of them, say A, has three nearest neighbours in each of the other
two sublattices B and C.
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Hence there are three kinetically coupled master equations referring to the time evolution
of each sublattice average concentration. In these equations, the density of current flux
describes the diffusion in the Ox direction as the jumps in the Oy direction complement
each other:

∂pα(k)

∂t
=
∑
a

∑
λ6=α

J αλa (k) (11)

whereJ αλa (k) is the density of current from the sublatticeα to sublatticeλ andpα(k) is
the average concentration of the sublatticeα:

J αλa (k ) = ωαλ(k,a)pα(k)(1− pλ(k + a))− ωλα(k + a,−a)pλ(k + a)(1− pα(k)) (12)

whereα, λ = A, B or C andλ 6= α.

5. Numerical results

Numerical resolution of equation (11) is carried out, as in the case of the square lattice [20],
under the following conditions.

(i) The lattice is semi-infinite in the main diffusion direction Ox and finite and
periodically bounded in the Oy direction (0< y < L).

(ii) There is a source at the positionx = 0(p(x = 0, y, t) = 1, ∀t) which feeds the
lattice and a well at a sufficiently large abscissa(p(xM, y, t) = 0, ∀t).

(iii) The calculation was done with box dimensions (Ly = 101;Lx � Ly).

In figure 2, the dependence of the order parameter on the lattice average concentration
is represented for different values of the reduced energyγ . We observe that the order in the
lattice is related to a break in the occupation symmetry of the lattice. There exists a minimal
concentration which depends on the interaction regime. This critical concentration decreases
for increasing pair interaction energy. The transition to an ordered phase is specified by
the growth of the ordered structure until the commensurate phases of the lattice. Hence
long-range order appears for the concentrations 1/3 and 2/3. Going beyond these values,
the intercalation process leads the system progressively into its disordered phase.

The occupation of the sublattices (figure 3) shows that two of them present similar
behaviours. Let B and C be the equivalent sublattices. Hence, the kinetic equations (11) are
reduced to only two equations which govern the dynamics of the diffusion process. It follows
that the order in the triangular lattice can be characterized by only one order parameter that
measures the difference between the occupancies of A and the equivalent sublattices.

In figure 3, we have found the ground-state structures for the triangular lattice gas with
nearest-neighbour repulsions only; we obtained the following equilibrium configurations.

(1) For p̄ = 1/3 the A sublattice is more highly occupied than are the B and C
sublattices. In the limit of the very strong interactions (γ � 1), we tend to the case where
the sublattice A is full and the sublattices B and C are empty.

(2) For p̄ = 2/3 we have the opposite case.

We define bypν(ν = A,B,C) the probability that the site of sublatticeν is occupied
by an ion. The resolution affects only half the concentration interval. The second part is
attained by means of the usual relation of the symmetry-particle gap with the gap bears
on the two equivalent sublattices. The system evolution obtained shows that a long-range
order is established for the concentrations 1/3 and 2/3, whereas there is finite-range order
on both sides of these concentrations.



2438 H Ennamiri et al

Figure 2. Evolution of the order parameter for different reduced energies. The arrows indicate
the different values of the reduced energies.

Figure 3. The breakdown of the occupation symmetry of the triangular lattice.

Nevertheless, the dynamics of the triangular lattice are governed by the temporal
evolution of the average concentrationspA andp′ where upper index and apostrophe denote
the sublattice A and the equivalent sublattices B and C, respectively. The equations can
be written in terms of the order parameterη and the lattice average concentrationp̄ at
abscissak.

Here, the order parameter designates the difference between the occupations the



Application to LixTiS2 battery 2439

equivalent sublattices and the third sublattice:

∂p̄(k)

∂t
= 1

2

∑
a

D−aJ̄a(k) (13)

∂η(k)

∂t
= −

∑
a

(JA(BC)a (k)− J (BC)Aa (k)) (14)

where

J̄a(k) = 1
2(J

A(BC)
a + J (BC)Aa )

p′(k) = (pB(k)+ pC(k))/2
η(k) = (pA(k)− p′(k))
p̄(k) = (pA(k)+ 2p′(k))/3

andJA(BC)a (k) is the current from sublattice A to sublattices B and C.
Contrary to equation (13), the temporal evolution of the order parameter cannot be

written in the form of a conservative equation as the variable itself is not perserved. Starting
from equations (13) and (14), we can recover the exact result concerning the evolution of
the order parameter with the average concentration. This result is in good agreement with
the result found by the three coupled equations (11). This will be discussed in a future
publication [21].

6. Incremental capacity

The basic idea of calculation of the incremental capacity consists in transforming the
expression of the currents flux into a contributionS, symmetrical with respect to the initial
and final state, and a factor which is the difference between a local functionC invariant to
the transformations of the local point group of symmetry, taken at the final and initial states
[17]:

JA(BC)a (k) = S(CA − C ′) (15)

where

S = ω0(1− pA)(1− p′) (16)

and

CA = exp(Zγp
′) exp(γp

A) pA

1− pA (17)

whereZ is the number of nearest-neighbour sites.
At the equilibrium state, the quantitiesCA andC ′ are conserved.C is equivalent to the

absolute activity that permits us to define the chemical potentialµ:

βµ = lnC.

Hence, we derive the following expression for the incremental capacity:

dp̄

dµ
= βC

(
∂C

∂p̄
+ ∂C
∂η

∂η

∂p

)−1

(18)

and

η
t→∞

(t) = ηeq .
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The fine structure which appear in the curve representing the incremental capacity are
introduced naturally in this equation as the incremental capacity takes into account the whole
variation in the order parameter with average concentration.

The numerical resolution of equation (18) leads to the curve shown in figure 4, where
we report the variation in the incremental capacity for different values of the reduced energy,
whereas in figure 5 we report its temporal variation for a fixed value of the reduced energy
γ = 1.6. In figure 4, d̄p/dµ is symmetrical around̄p = 1/2. The minimum atp̄ = 1/3
corresponds to a sharp rise inµ and is produced by the exclusion of nearest-neighbour pairs
of occupied sites for̄p 6 1/3, as in other studies [2, 8, 22].

Figure 4. Calculated derivative average concentration dp̄/dµ with respect to the chemical
potential versus average concentration for the triangular lattice gas with different reduced
energies.

The peaks near̄p = 0.15 for γ = 2, andp̄ = 0.2 for γ = 1.6 correspond to the onset
of long-range order as̄p increases, and those nearp̄ = 0.4 correspond to the destruction of
this long-range order. In figure 5, we notice that, by increasing the time, only the peaks at
p̄ = 0.2 decrease and that is caused by the increase in the chemical potentialµ with time.
We thus confirm the conclusions of Berlinskyet al [2] and others [22–24] concerning the
significance of the minima and maxima of the incremental capacity. The curves obtained are
in good agreement with the results obtained by the Monte Carlo and renormalization group
[8, 25] methods. The consideration of the mean-field approach permits us to exploit more
easily the dynamics of the system. Hence, we shall use the simplicity of the calculations in
this approach to compute the diffusion coefficient for both square and triangular geometry
and to compare with other studies [26–30].

7. Conclusion

We have presented here the establishment and the evolution of the ordered phase for the
triangular lattice gas with only nearest-neighbour repulsive interactions. The main effect
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Figure 5. Effects for the order establishment at the equilibrium on the mean-field approach of
the incremental capacity.t →∞ can be considered as the infinite time (γ = 1.6).

of this condition is a second-order transition between the ordered and disordered phases at
p̄ = 1/3 and 2/3. This is reflected in the curves relative to the phase separation and to
the response to the intercalation process. We thus confirm the validity of the lattice gas
model in the mean-field approach as a first approximation for the problem of ordering Li+

ions in systems such as LixTiS2. The advantage of the mean-field approach is to permit us
to treat the dynamics of the system more easily; thus we expect to extend this approach
to the computation of the diffusion coefficient. More details will be given in a future
publication [21].
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